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CONSPECTUS: Although advances in computer hardware and algorithms tuned for
novel computer architectures are leading to significant increases in the size and time
scale for molecular simulations, it remains true that new methods and algorithms will
be needed to address some of the problems in complex chemical systems, such as
electrochemistry, excitation energy transport, proton transport, and condensed phase
reactivity. Ideally, these new methods would exploit the strengths of emerging
architectures. Fragment based approaches for electronic structure theory decompose
the problem of solving the electronic Schrodinger equation into a series of much
smaller problems. Because each of these smaller problems is largely independent, this
strategy is particularly well-suited to parallel architectures. It appears that the most
significant advances in computer architectures will be toward increased parallelism,
and therefore fragment-based approaches are an ideal match to these trends. When
the computational effort involved scales with the third (or higher) power of the
molecular size, there is a large benefit to fragment-based approaches even on serial
architectures. This is the case for many of the well-known methods for solving the
electronic structure theory problem, especially when wave function-based approaches
including electron correlation are considered. A major issue in fragment-based
approaches is determining or improving their accuracy. Since the Achilles’ heel of any such method lies in the approximations
used to stitch the smaller problems back together (i.e., in the treatment of the cross-fragment interactions), it can often be
important to ensure that the size of the smaller problems is “large enough.” Thus, there are two frontiers that need to be
extended in order to enable molecular simulations for large systems and long times: the strongly coupled problem of medium
sized molecules (100−500 atoms) and the more weakly coupled problem of decomposing (“fragmenting”) a molecular system
and then stitching it back together. In this Account, we address both of these problems, the first by using graphical processing
units (GPUs) and electronic structure algorithms tuned for these architectures and the second by using an exciton model as a
framework in which to stitch together the solutions of the smaller problems.
The multitiered parallel framework outlined here is aimed at nonadiabatic dynamics simulations on large supramolecular
multichromophoric complexes in full atomistic detail. In this framework, the lowest tier of parallelism involves GPU-accelerated
electronic structure theory calculations, for which we summarize recent progress in parallelizing the computation and use of
electron repulsion integrals (ERIs), which are the major computational bottleneck in both density functional theory (DFT) and
time-dependent density functional theory (TDDFT). The topmost tier of parallelism relies on a distributed memory framework,
in which we build an exciton model that couples chromophoric units. Combining these multiple levels of parallelism allows
access to ground and excited state dynamics for large multichromophoric assemblies. The parallel excitonic framework is in good
agreement with much more computationally demanding TDDFT calculations of the full assembly.

1. INTRODUCTION

In 1929, Dirac famously wrote: “The underlying physical laws
necessary for the mathematical theory of a large part of physics
and the whole of chemistry are completely known, and the
difficulty is only that the exact application of these laws leads to
equations much too complicated to be soluble. It therefore
becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which can
lead to the main features of complex atomic systems without
too much computation.”1 Dirac’s statement is arguably as

accurate now as it was then, although increases in central
processing unit (CPU) speed and the recent introduction of
graphical processing units (GPUs) has led to continual revision
of what constitutes “too much computation”. While CPUs excel
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at sequential execution, coarse-grained parallelism, and control-
flow dominated code, GPUs are extremely efficient for data-
parallel floating point operations.2,3 GPUs emphasize massive
parallelism, and their effective use requires integrating software
design with hardware architecture. The potential of GPU-based
algorithms has been recognized in chemistry, most notably in
molecular dynamics (MD)4−6 and quantum chemistry.7−17

The quest for efficient and accurate electronic structure
theory methods is driven by the desire to gain microscopic
insight into increasingly large nanoscale molecular systems
including biomolecular systems, condensed phases, and nano-
materials.17−19 Empirical force field based MD simulations are
applicable to large systems for long times, and new computing
platforms, including specialized hardware20,21 and cloud-based
architectures,22 have enabled millisecond simulations of protein
dynamics. Unfortunately, these are limited by the difficulty in
describing polarization, charge transfer, covalent bond for-
mation/rupture, and electronic excitation with empirical force
fields.
Quantum mechanics/molecular mechanics (QM/MM)

approaches23,24 combine the benefits of electronic structure
and molecular mechanics by splitting the molecular system into
a QM part where electrons are modeled explicitly and an MM
part that is described with an empirical force field.17,23−25

Difficulties in practical implementations arise because of
ambiguities at the boundary between the QM and MM regions.
Results can depend both on the placement of the boundary and
also on the specific scheme used to calculate the interactions
between QM and MM regions. Assessing how these
uncertainties affect phenomenological observables is difficult a
priori and requires analyzing whether an observable is
converged with respect to the size of the QM region. Such
convergence tests are rarely undertaken because of their cost;
however, in cases where they have been undertaken (for
solvation energies,26 hydrogen bonding,27 NMR shifts,28,29

absorption spectra,17 and enzymatic reaction barriers30), rather
large QM regions with hundreds of atoms have been found
necessary.
The need to treat large QM regions motivates the

development of hardware-adapted software frameworks for
electronic structure theory. Efficiency is particularly important
for complex systems with thousands of atoms, where the
potential energy landscape includes a host of thermally
accessible local minima. In these cases, small-molecule concepts
like that of a stationary point are not very useful; one must
dynamically sample a statistically meaningful portion of the
relevant phase space. In the first part of this Account, we
outline recent work aimed at building efficient GPU-based
algorithms for molecular electronic structure theory. These
acceleration approaches are broadly applicable, but we focus on
their application in both density functional theory (DFT) and
time dependent density functional theory (TDDFT), enabling
efficient characterization of both ground and excited states of
systems with up to 1000 atoms.
An open question is whether these GPU-accelerated

methods can be extended to even larger systems. We are
especially interested in electronic excited states and thus focus
here on multichromophoric assemblies. As an example,
consider the LH2 photosynthetic complex found in purple
bacteria (shown in Figure 1), which is composed of 27
bacteriochlorophyll-a (Bchla) chromophores (137 atoms each).
A single LH2 complex contains 3699 atoms, in addition to the
protein scaffold surrounding it. Excited state molecular

dynamics simulations on systems of this size surpass the
capabilities of the most efficient TDDFT implementations and
require additional levels of parallelism adapted to exploit
modern architectures.
In the latter part of this Account, we outline recent work

developing parallelizable distributed-memory exciton-type
approaches to calculate ground and excited state energies and
gradients for large multichromophoric systems like LH2. Figure
1 schematically identifies the three different tiers of parallelism
that may be exploited in carrying out excited-state calculations
on a large supramolecular complex such as LH2 following its
partitioning into n smaller subunits (e.g., individual Bchla’s).
The top tier of parallelism corresponds to each of the n subunit
calculations split across nodes linked through a distributed
memory parallel framework. At the middle tier of parallelism,
multiple CPUs manage calculations across several GPUs on a
particular node. The bottom tier of parallelism is the many-core
shared-memory architecture of the individual GPUs on a
particular node, used to calculate electronic interactions.
This multitiered parallel framework is well-adapted to large-

scale nonadiabatic dynamics simulations with atomic-level
resolution. A critical aspect of any approach that splits a larger
calculation into smaller constituent parts concerns the treat-
ment of coupling between the n different subunits. A many-
body expansion is the most accurate way of calculating coupling
between subunits;31 however it can also lead to considerable
expense. In the latter half of this Account, we introduce some
approximations for these couplings that effectively allow us
access to a computational scaling on the order of n·QM/MM.
Ultimately, our aim is to build computational frameworks that
extend quantum chemistry from the domain of teraFLOPs to
the domain of petaFLOPs, allowing us to model nanometer-
sized supramolecular structures in atomistic detail.

2. TERAFLOP MOLECULAR QUANTUM CHEMISTRY
ON GPUS

2.1. GPU Architectures and Quantum Chemistry

GPU architectures allow users to (1) exploit multiple levels of
parallelism and (2) map algorithmic kernels directly onto the
computing architecture using flexible programming models.
The many-core architecture of GPUs allows multithreaded,
fine-grained, data-parallel computing. The parallel capabilities

Figure 1. Parallel implementation on hybrid distributed/shared
memory architectures. The structure of the LH2 chromophores is
shown in the upper left hand corner.
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of the GPU are exposed to the user through a parallel
programming language such as Open Compute Language
(OpenCL) or the Compute Unified Device Architecture
(CUDA). The calculations described herein (implemented
within the TeraChem program32,33) utilize CUDA, in which
GPU programmatic control is invoked through an explicitly
defined “kernel”, or C-type function. Kernel execution runs
simultaneously on thousands of GPU threads. Although
logically autonomous, each GPU thread is associated at varying
levels with all others to form a parallel hierarchy. The simplest
association between threads is the grouping of 32 threads to
form a warp, which executes identical instruction streams using
the single-instruction−multiple-thread (SIMT) scheme. Warps
are encapsulated in collective groups of up to 1024 threads,
known as thread blocks. Arrays of thread blocks, in up to three
dimensions, form the fundamental interface between the host
CPU and the GPU. When a CUDA kernel is invoked by the
host, the thread blocks are distributed onto any available
streaming multiprocessors (SM), where each thread of a
particular thread block executes simultaneously. The physical
GPU is itself composed of several multithreaded SM units,
providing a direct mapping of the thread block grid onto the
SM array. Each individual SM consists of a set of streaming
processor cores, on-chip shared memory, and a multithreaded
instruction unit, which allows each SM to manage multiple
thread blocks and concurrently execute hundreds of threads.
The GPU architecture includes a memory hierarchy to support
the structure of the SM units and the interface with the host
CPU.
Execution of a GPU kernel by the host initiates a memory

transaction between the host memory and the global GPU
memory via the PCIe interface. Global memory allows
simultaneous access by each thread in a warp to contiguous
memory locations, but incurs high latencies (on the order of
hundreds of GPU clock cycles). This feature leads to a
paradigm shift in GPU programming philosophy vs CPU
programming philosophy: whereas CPU-optimized code strives
to minimize clock cycles on the premise that memory access is
cheap, GPU-optimized code tends to minimize global memory
access on the premise that clock cycles are cheap. Accordingly,
whenever possible, GPU-accelerated programs restrict memory
access to shared on-board GPU-memory, whose low latency
and high bandwidth make rapid intrablock communication
possible.
GPU threads are extremely lightweight: each thread is

allocated a small memory space to store intermediate results
before returning data to shared global arrays. Efficient
scheduling prevents latency in the concurrent execution of
thousands of SM threads. For the applications outlined in this
Account, the number of blocks and threads in the CUDA grid
generally surpasses the number of physical execution units on
the GPU by many orders of magnitude. This is an advantage
because saturation of the GPU with many more threads than
cores hides issues related to GPU DRAM access latency and
allows cores to remain continuously active throughout kernel
execution. An additional efficiency consideration relates to data
parallelism of the algorithm itself. Synchronization between
threads and blocks reduces the effective concurrency. Thus, it is
preferable to recompute intermediate quantities when needed,
rather than rely on shared memory, interthread communica-
tion, and synchronization.

2.2. Ground and Excited State Quantum Chemistry

The fine-grained parallelism of GPUs is well-suited to quantum
chemistry.9,13,32,34−36 The most commonly used methods for
describing the single-reference, electronic ground state of an
arbitrary chemical system are self-consistent field (SCF)
methods, for example, Hartree−Fock (HF) and DFT, effective
one-electron theories describing each electron in a mean field
of all other electrons. Time-dependent Hartree−Fock (TDHF)
theory37 and time-dependent density functional theory
(TDDFT)38 are extensions of these methods that describe
the response of the ground state electron density to time-
dependent external radiation fields. SCF methods such as HF
and DFT rely on solving

=FC ESC (1)

where F is the Fock operator, C contains the molecular orbital
(MO) coefficients, and S is the atomic orbital (AO) overlap
matrix. For molecules with less than 1000 atoms, construction
of the Fock matrix elements is usually the rate-limiting step,
because it requires calculating electron repulsion integrals
(ERIs). The two-electron part of the Fock matrix consists of
Coulomb (J) and exchange (K) components:

∑ μν λσ= |μν
λσ

λσJ P( )
(2)

∑ μλ σν= |μν
λσ

λσK P( )
(3)

where (...|...) indicates an ERI of the form:
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where χ(r)⃗ are atom-centered Gaussian basis functions and the
density matrix elements are defined in terms of the MO
coefficients (shown for the simplified case of a closed shell
determinant with Nel electrons) as

∑= *μν μ νP C C2
i

N

i i

/2el

(5)

Construction of the J and K matrices in both HF and DFT
theory represents a significant computational bottleneck: it
formally requires evaluating N4 integrals, and ERI paralleliza-
tion can lead to significant efficiency gains. The general
algorithmic strategy to achieve high performance in SCF
calculations involves reformulation of the integral evaluation
structure to exploit the GPU architecture and take advantage of
sparsity as much as possible. In a number of cases, we also avoid
storing intermediate quantities and instead duplicate computa-
tions. This can be more efficient on the GPU because storage is
at a premium as discussed above. For example, the integrals
(μν|λσ) and (λσ|μν) are computed independently during the
formation of J, even though they are identical (see eq 4).
In large chemical systems, the J and K matrices are sparse

because many of the ERIs are numerically insignificant.39−45

High performance gains come from efficient recognition of
insignificant ERI matrix elements that do not need to be
considered. For ERIs of the form (μν|λσ), the Cauchy−
Schwarz inequality provides a bound on the magnitude of the
ERI:

μν λσ μν μν λσ λσ| | | ≤ | |( ) ( ) ( )1/2 1/2
(6)
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The most efficient schemes for exploiting these bounds involve
robust ordering; otherwise insignificant ERIs are interspersed
among the important ones (Figure 2), and several cores are
occupied computing non-negligible matrix elements while
others remain idle. To resolve this, the primitive bra and ket
arrays are sorted by decreasing Cauchy−Schwarz bounds prior
to computing J, as shown in Figure 2. A similar sorting is
carried out before computing K. These sorting procedures
concentrate all the significant integrals in the upper left corner
of a set of grids. In this way, groups of threads can “walk”
through the integral matrix and the entire group will be
occupied with significant integrals. This approach avoids both
warp divergence and logic associated with testing the Schwarz
bound. Because the significance of an integral is guaranteed to
decrease as a thread moves across rows or down columns, all
threads can stop processing as soon as the cutoff threshold has
been reached (within a grid).
The algorithms outlined above, which include s, p, and d

functions,37 can be extended to excited state methods such as
single-excitation configuration interaction46 (CIS) and Tamm−
Dancoff TDDFT,47 where one of the key steps is again the
construction of a Fock matrix (based on transition density
matrices in place of the density matrix shown in eq 5). The
same principles apply, but the gains are much larger since the
transition density matrices are usually much sparser than
density matrices. Essentially, this simplification arises because a
transition density matrix describes the change due to a single
electron while the density matrix describes the distribution of
all electrons.
As an example of the kinds of calculations that are possible

with GPU-accelerated DFT, we show explicit timings for a
series of water clusters (with up to 1000 water molecules) in
Figure 3. Scaling of the overall SCF calculation is quadratic with
molecular size; the cubic scaling of the diagonalization
algorithm only becomes problematic for systems with more
than 2000 atoms (7000 basis functions).

3. EXCITONIC MOLECULAR QUANTUM CHEMISTRY
ON GPUS

Although GPU-based quantum chemistry represents a sig-
nificant advance over previous CPU-based algorithms, molec-
ular size remains limited by the cubic scaling of matrix
diagonalization and physical constraints on the number of
GPUs that can coexist in a single node. Approaches for further
tiers of parallelization are needed. In the case of multi-
chromophoric assemblies, an excitonic framework is well suited

to this purpose. An exciton is an excited electronic state
delocalized over several spatially separated molecular units,
described as a superposition of coupled excitations on the
individual molecular units. We illustrate the following
discussion with a dimer and hexamer of Bchla chromophores,
shown in Figures 4 and 5.
In the weak coupling limit, excitonic states are largely

localized on each individual chromophore. In contrast, strong
coupling leads to delocalized excitonic states. The exciton
Hamiltonian is typically written as a matrix H in a basis of
single excitations over N chromophores as48

∑ ∑= | ⟩⟨ | + | ⟩⟨ |
= ≠

E i i V i jH
i

N

i
j i

ij
1 (7)

where chromophore i is excited in |i⟩. The diagonal site
energies and the off-diagonal couplings between site-specific
excitations are given as Ei and Vij, respectively. When the
interactions are not too strong, the coupling can be
approximated using a Forster-type expression,49,50 which
accounts for Coulombic interaction between the different
exciton basis states. In cases where the coupling is strong,
generally because the chromophores are closely spaced, Dexter-
type integrals (which describe through-bond electronic

Figure 2. Organization of ERIs for Coulomb formation. Rows and columns correspond to primitive bra and ket pairs, respectively. Each ERI is
colored according to the magnitude of its Schwarz bound. Pink/red indicates a large value of the ERI integral, and blue a small value.

Figure 3. First SCF iteration timings in seconds for cubic water
clusters. The total SCF times are broken down into J, K, linear algebra
(LA), and DFT exchange-correlation contributions. All calculations
were performed using a single Tesla M2090 GPU and the 6-31g basis
set. Power fits show scaling with increasing system size, and the
exponent for each fit is provided in the legend.
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exchange)51 and so-called “penetration interactions” (which
describe the interactions between electrons and screened
nuclei)52 are important,53,54 although these generally fall off
exponentially with interchromophore distance.52

In the exciton procedure outlined below, TDDFT provides
the ground and electronic excited state energies of each
chromophore, as well as interchromophoric couplings. Despite
its shortcomings, TDDFT offers an efficient and practical way
forward in calculating ground and excited state properties in
many-electron systems.38

Observable quantities such as the oscillator strength are
influenced by the magnitude of the coupling between ground
and excited states. In the exciton model, we adopt the following
notation for the excitonic basis functions: |φ0⟩ denotes the
ground-state wavefunction of the full system and |φi,k⟩ denotes
the wavefunction of the kth excitation of chromophore i, with all
other chromophores in their respective ground states. The
matrix element corresponding to the ground state energy of the
coupled supramolecular system is given by:

∑ ∑

φ φ

ε
μ μ μ μ

= ̂

= +
⃗ · ⃗ − ⃗ · ⃗ ⃗ · ⃗

>

E H

n n

R

3( )( )

i
i

j i

i j ij i ij j

ij

0 0 0

( ,0)
( ,0) ( ,0) ,0 ( ,0)

3
(8)

where εi,0 is the ground state (i.e., state 0) energy of
chromophore i, and μ⃗(i,0) is the ground state dipole moment
of the ith chromophore. The individual chromophores are
coupled through dipole−dipole interactions between the
ground state wave functions that fall off as the cube of the
interchromophore distance, Rij, which we take as the center-of-
mass (COM) separation. The neglect of overlap in eq 8 means
that it is most accurate when the chromophores are not too
strongly interacting. Equation 8 could be made more accurate
using a many-body expansion as typical in fragment-based
molecular calculations.55−58 For the cases explored below, the
separation between the individual chromophores is large
enough that the dipolar Coulombic ground state coupling is
sufficient.
Diagonal matrix elements corresponding to excited states are

calculated as

∑ ε ε δ= + +
≠

E i k
j i

j i k( , ) ( ,0) ( , )
(9)

where ε(i,k) is the energy of the kth electronic state on the ith

chromophore. The optional δ (which we do not use here) can
correct for discrepancies between TDDFT and experimental
excitation energies.
Considering Nx excited states for each of N chromophores,

there are Nx(N + 1) basis states. Off-diagonal Hamiltonian
elements are evaluated with the dipolar Forster expression:

φ φ

ε

= ̂

=
⃗ · ⃗ − ⃗ · ⃗ ⃗ · ⃗← ← ← ←

V H

M M n M n M

R
1 3( )( )

i k j l i k j l

i k i j l j ij i k i ij j l j

ij

( , )( , ) ( , ) ( , )

r

( , ) ( ,0) ( , ) ( ,0) ( , ) ( ,0) ( , ) ( ,0)
3

(10)

where M⃗(i,k)←(i,0) is the transition dipole for the k← 0 transition
on chromophore i, n⃗ij is a unit vector along the COM
separation R⃗ij, and εr is an effective dielectric constant. Equation
10 is very accurate in the limit of large R. Similarly, the off-
diagonal matrix elements, which couple the ground state to an
electronic state with an excited chromophore, are

∑

φ φ

ε

μ μ μ μ

= ̂

=
⃗ · ⃗ − ⃗ · ⃗ ⃗ · ⃗

≠

V H

n n

R
1 3( )( )

j l j l

i j

i j l ij i ij j l

ij

(0)( , ) 0 ( , )

r

( ,0) ( , ) ( ,0) ( , )
3

(11)

where μ⃗(i,k) is the dipole moment of the kth excited state of
chromophore i.
The general framework of the exciton model is illustrated

schematically in Figure 4 for a Bchla dimer extracted from the
LH2 complex, with COM separation RAB: the ground states of
each chromophore couple through dipole−dipole interactions
as (μ⃗A·μ⃗B)/RAB

3, coupling between ground and excited states
occurs through (μ⃗A*·μ⃗B)/RAB

3, and (μ⃗A·μ⃗B*)/RAB
3 terms, and

coupling between excited states occurs through the M⃗A·M⃗B/
RAB

3 term (where * denotes an excited state). The resulting
eigenstates describe the full N-chromophore complex. For
example, treating a six-chromophore system with a single

Figure 4. Schematic of the exciton model construction. Initially, the
dimer is decomposed into exciton bases, corresponding to two Bchla
molecules. Next, the ground and excited states of each chromophore
are characterized using an excited state electronic structure method
such as TDDFT. Ground and excited state electronic properties such
as dipole and transition dipole moments are computed for each
chromophore separately. Finally, the exciton Hamiltonian is
constructed and diagonalized to obtain the ground and excited states
of the full dimer complex.
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excitation on each chromophore yields a symmetric excitonic
Hamiltonian of the form:

=

···
···
···

⋮ ⋮ ⋮ ⋱ ⋮
···

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

E V V V
V E V V
V V E V

V V V E

H

0 (0)(1,1) (0)(2,1) (0)(6,1)

(0)(1,1) (1,1) (1,1)(2,1) (1,1)(6,1)

(0)(2,1) (1,1)(2,1) (2,1) (2,1)(6,1)

(0)(6,1) (1,1)(6,1) (2,1)(6,1) (6,1) (12)

where E0 is given by eq 8, the remaining diagonal matrix
elements are given by eq 9, first row and column off-diagonal
elements are defined in eq 11, and all other off-diagonal matrix
elements are defined in eq 10.
The inset of Figure 5 shows a set of Bchla’s forming a subset

of LH2. Within this subset, two of the Bchlas participate in
LH2's B800 ring, and four in the B850 ring. This model system
(450 atoms, 2700 basis functions) is a challenging target for our
exciton method. We test the accuracy of the exciton framework
by direct comparison to TDDFT calculations of the entire
system, using a range-corrected exchange-correlation func-
tional, ωPBEh (ω = 0.2), in the 6-31g basis set. Dynamical
sampling effects are included through 1000 structures obtained
from ground-state empirical force field MD simulations of the
full LH2 complex.
For a set of 1000 MD snapshots, Figure 5 shows correlation

between the energies of the S0, S1, S2, S3, S4, S5, and S6 states
obtained from (1) diagonalization of the exciton Hamiltonian
in eq 12 and (2) full TDDFT. Perfect correlation between the
TDDFT and excitonic energies is indicated by a diagonal line.
As shown in the bottom panel of Fig 5, the agreement between
the excitonic approach and the TDDFT results is good, with an
average error over all six excited states of 0.008 eV.

Using the eigenvectors obtained from diagonalization of the

exciton Hamiltonian, one can calculate transition dipoles,

oscillator strengths, nonadiabatic coupling vectors, and

absorption spectra. In terms of the excitonic basis functions,

the Ith eigenstate of the excitonic system is

∑ψ φ φ| ⟩ = | ⟩ + | ⟩c cI
I

i k
i k
I

i k0 0
,

( , ) ( , )
(13)

where c(i,k)
I are the coefficients specifying the contribution of the

|φ(i,k)⟩ basis function to the Ith excitonic eigenstate, and c0
I are

the coefficients specifying the contribution of the ground state

basis function, |φ0⟩ to the I
th excitonic eigenstate. The transition

dipole moment between the ground ψ0 and excited eigenstate

ψJ is

∑
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0

,
( , ) 0 ( , )

0
,

( , )
0

( , ) 0
, , ,

( , )
0

( , ) ( , ) ( , )

(14)

where μ̂ is the dipole moment operator. Considering only

transitions between electronic states on a single chromophore i

allows us to simplify the final term in eq 14, giving

Figure 5. Top panel compares energies for the first six excited singlet states obtained using (1) the excitonic framework and (2) full TDDFT
calculations on the six-chromophore system. The diagonal line represents perfect agreement between TDDFT and the exciton model. The bottom
panel shows histograms of the error in the exciton model (compared with full TDDFT), along with the average error ± the standard deviation for
each state.
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∑

∑ ∑
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The first term describes the contribution of the ground state
dipole moments of each chromophore. The second term
accounts for the transition dipole moments between the ground
and lth excited state on chromophore j. The third term treats
interactions between the ground and kth excited state on
chromophore i. The final term describes transitions between
excited states k and l on chromophore i, where M⃗(i,l)←(i,k) is the
corresponding transition dipole moment vector. From Fermi’s
Golden Rule, the oscillator strength is

ω= | ⃗ |f T
2
3I I I

2

(16)

where T⃗I is the transition dipole vector of the Ith excited state
of the full system and ωI is the corresponding excitation energy.
Within the Franck−Condon approximation, the absorption
spectrum can be calculated from single-point excitation
energies and oscillator strengths sampled from MD snapshots:
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where f I,α is the oscillator strength of the Ith eigenstate for the
αth dynamics snapshot, ΩI,α is the corresponding excitation
energy, and Γ is the homogeneous broadening width.
Figure 6 compares the absorption spectrum obtained using

full TDDFT with that obtained using the excitonic framework

(eqs 16 and 17) with Γ = 30 meV sampled over 1000 MD
geometries obtained from constant temperature classical
molecular dynamics simulations of the full LH2 complex
(chromophores plus environment) using a GPU-accelerated
version of the AMBER package. Overlap between the TDDFT
spectra and the excitonic spectra is maximum with εr in eqs 10
and 11 set to a value 1.05, suggesting that dielectric screening

effects are rather weak. The only noticeable difference between
the excitonic and TDDFT spectra concerns the shoulder on the
blue side of the band, linked to the two B800 chromophores.
The encouraging results of Figures 5 and 6 led us to

investigate dynamics with the exciton Hamiltonian. This
requires ground- and excited-state gradients and differentiation
of the excitonic Hamiltonian matrix elements in eqs 8−11. The
derivative of the ground state energy, E0, may be written as
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The derivatives of the diagonal matrix elements correspond-
ing to excited chromophores are given as

∑
ε ε∂
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Ground and excited state gradients on individual chromo-
phores are readily computed from TDDFT. Obtaining
derivatives for the off-diagonal matrix elements is more
complicated. Differentiation of eq 10 in particular requires
gradients of the transition dipole moment vectors, ∂M/∂R.
Here, we avoid this by using a simple approximation to the
transition dipole derivatives: ∂M/∂R between a particular set of
states for a given atom in a particular Cartesian direction is set
equal to its average value sampled over a series of MD
snapshots from dynamically significant regions of the
configuration space. This effectively amounts to assuming a
fixed atomic point charge model in both the ground state and
the excited states over the dynamically relevant portions of the
supramolecular configuration space. Relating the transition
dipole moments to the molecular geometry in this fashion
allows efficient differentiation of the excitonic state energies by
application of the Hellman−Feynman theorem:

ψ ψ⃗ = − ∂
∂

F
H
RI I I (20)

where |ψI⟩ is the wave function of the Ith eigenstate of the
excitonic Hamiltonian. Similarly efficient expressions may be
used to obtain nonadiabatic coupling vectors between excitonic
states required in nonadiabatic MD simulations, that is,

ψ ψ

ε ε
⃗ =

⟨ | | ⟩

−

∂
∂dIJ

I
H
R J

J I (21)

where d ⃗IJ is the nonadiabatic coupling vector between
electronic states I and J, and εI and εJ are the corresponding
energies.
Figure 7 shows significant performance gains using this

exciton model compared with full TDDFT. As a further test of
the accuracy of the results in Figure 7, we selected two adjacent
Bchla molecules from the LH2 subset in Figure 6 and
compared excited-state dynamics run using the exciton
framework with those obtained using full TDDFT. Simulations
were initialized from a random conformation from the
aforementioned MD snapshots, with velocities initialized
using a 300 K Boltzmann distribution, and assuming a vertical

Figure 6. Absorption spectrum of a six-chromophore system
computed with the exciton model and TDDFT. The inset shows
the six-chromophore arrangement of Bchla molecules, with
orientations extracted from MD simulations of LH2. Both spectra
have been scaled to a maximum amplitude of one for comparison.
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Franck−Condon excitation from S0 to S1. Propagation on S1
used a velocity Verlet algorithm with a 0.2 fs time step. Figure 8

compares the time-dependent S1 energy from the exciton and
TDDFT calculations. Good agreement is observed for the first
50 fs, and some drift is evident thereafter due to accumulation
of error in the respective gradients. After 100 fs, the deviation in
the S1 energy is small, on the order of ∼0.05 eV. Over the
subpicosecond time scales relevant to electronic relaxation and
energy transfer, Figure 8 suggests that the exciton model is
quite accurate.

4. CONCLUSIONS
Using shared memory hybrid CPU/GPU architectures, we are
able to carry out ground and excited state electronic structure
and dynamics for large molecular systems. These acceleration
approaches are applicable to a range of electronic structure
theory methods, but we focused here on density functional
theory and time dependent density functional theory
(TDDFT), demonstrating that excited state ab initio molecular
dynamics is now feasible for molecules with O(1000) atoms.

Beyond CPU/GPU shared memory parallelism, we outlined
an additional “top-level” layer of parallelism well-suited to
distributed memory frameworks, which we have demonstrated
using an excitonic framework. This enables ab initio molecular
dynamics calculations on large supramolecular systems.
Comparison between excitonic and full TDDFT simulations
is quite good. In fact, one significant advantage of efficient
TDDFT algorithms is that they offer standards against which to
test and compare various levels of approximation. A particularly
attractive feature of the excitonic framework described herein is
the fact that each of the building blocks from which it is
composed can be systematically improved. Therefore, it can
accommodate increasingly accurate methods for calculating
both diagonal site energies and off-diagonal couplings.
Understanding electronic excitation transfer in condensed

phase supramolecular systems remains a significant challenge.
Future work will adapt the frameworks described herein to
carrying out dynamics simulations on larger systems. This
presents a number of challenges, in terms of both theoretical
and algorithmic development. For example, to study the
nonadiabatic dynamics of systems with very strong coupling, we
will need to investigate efficient ways in which to go beyond
Coulombic dipole couplings, ideally using functional forms that
are able to efficiently treat both strong and weak coupling
regimes. For condensed phase systems (for example, in liquids
or biomolecular systems), we will need to implement efficient
strategies that treat the dynamics of the environment and its
interaction with the chromophores. Because the hybrid/
multitiered parallel approach outlined herein scales extremely
well over parallel distributed-memory architectures built from
large arrays of GPU nodes, it should allow us to carry out fully
atomistic nonadiabatic dynamics simulations of massive supra-
molecular complexes, taking full advantage of the combined
shared memory/distributed memory architectures of the
world’s largest supercomputers. Exascale computing architec-
tures are forecast to emerge in the next 5−10 years, and it is
likely that these machines will rely on massive multitiered
parallelism of the sort discussed herein, fusing low level shared
memory parallelism with top level distributed memory
parallelism. Theoretical frameworks like those outlined herein
will allow full exploitation of these architectures, enabling us to
gain microscopic insight into some of nature’s most challenging
molecular energy transfer systems.
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